z-logo
Premium
Testing for fault activity at Yucca Mountain, Nevada, using independent GPS results from the BARGEN network
Author(s) -
Hill Emma M.,
Blewitt Geoffrey
Publication year - 2006
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2006gl026140
Subject(s) - geology , global positioning system , tectonics , seismology , fault (geology) , geodesy , shear zone , shear (geology) , inversion (geology) , paleontology , telecommunications , computer science
Data from BARGEN GPS stations around Yucca Mountain (YM) have been independently processed using GIPSY‐OASIS and GAMIT/GLOBK. The RMS velocity differences between these solutions is 0.06 mm/yr (east component) and 0.10 mm/yr (north), indicating an ability to resolve tectonic signals >0.3 mm/yr with high confidence. Inversion of GPS station velocities for Eastern California Shear Zone (ECSZ) fault parameters produces an unreasonably deep locking depth of ∼30 km for the Death Valley‐Furnace Creek fault system, contradicting seismological evidence. The GPS cluster locally west of YM observes a strain rate of 17.0 ± 1.8 ns/yr, marginally higher than our ECSZ model predicts (13.9 ± 0.7 ns/yr). Significantly, the cluster to the east observes 22.3 ± 2.1 ns/yr, which is 6.2σ higher than the model (8.6 ± 0.7 ns/yr), suggesting that additional sources of strain more local to YM (<30 km) are currently active, collectively accumulating >0.7 mm/yr.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom