z-logo
open-access-imgOpen Access
On the distribution of ionospheric electron density observations
Author(s) -
Garner T. W.,
Taylor B. T.,
Gaussiran T. L.,
Coley W. R.,
Hairston M. R.
Publication year - 2005
Publication title -
space weather
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.254
H-Index - 56
ISSN - 1542-7390
DOI - 10.1029/2005sw000169
Subject(s) - log normal distribution , mathematics , statistical physics , statistics , distribution fitting , ionosphere , heavy tailed distribution , probability distribution , physics , geophysics
For most space scientists, the general expectation of ionospheric measurements is that if properly binned, observations will obey a normal or Gaussian distribution. This paper challenges this assumption and argues that a lognormal distribution can better describe ionospheric densities. It presents a simple mathematical argument for ionospheric density observations obeying a lognormal distribution. To demonstrate the efficacy of the lognormal distribution, a sample distribution of total ion densities is presented and is compared with a lognormal distribution characterized by parameters estimated from the data. This distribution of DMSP observations fits a lognormal distribution with a probability plot correlation coefficient (PPCC) of 0.99932. The PPCC is the linear correlation between the ordered distribution and ordered statistical medians and measures how well a given set of values conforms to a given distribution. When the PPCC = 1, the distribution perfectly fits the data. When binned by solar activity (on the basis of the F 10.7 cm proxy) and geomagnetic latitude, over 95.3% of the binned observations follow a lognormal distribution with a PPCC over 0.9. Since the topside electron densities tend to obey a lognormal distribution, the existing metrics for forecast performance need to be revised.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here