Premium
Automated daily processing of more than 1000 ground‐based GPS receivers for studying intense ionospheric storms
Author(s) -
Komjathy Attila,
Sparks Lawrence,
Wilson Brian D.,
Mannucci Anthony J.
Publication year - 2005
Publication title -
radio science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.371
H-Index - 84
eISSN - 1944-799X
pISSN - 0048-6604
DOI - 10.1029/2005rs003279
Subject(s) - global positioning system , computer science , ionosphere , tec , remote sensing , satellite , total electron content , time to first fix , gps signals , assisted gps , telecommunications , geography , geology , aerospace engineering , geophysics , engineering
As the number of ground‐based and space‐based receivers tracking the Global Positioning System (GPS) satellites steadily increases, it is becoming possible to monitor changes in the ionosphere continuously and on a global scale with unprecedented accuracy and reliability. As of August 2005, there are more than 1000 globally distributed dual‐frequency GPS receivers available using publicly accessible networks including, for example, the International GPS Service and the continuously operating reference stations. To take advantage of the vast amount of GPS data, researchers use a number of techniques to estimate satellite and receiver interfrequency biases and the total electron content (TEC) of the ionosphere. Most techniques estimate vertical ionospheric structure and, simultaneously, hardware‐related biases treated as nuisance parameters. These methods often are limited to 200 GPS receivers and use a sequential least squares or Kalman filter approach. The biases are later removed from the measurements to obtain unbiased TEC. In our approach to calibrating GPS receiver and transmitter interfrequency biases we take advantage of all available GPS receivers using a new processing algorithm based on the Global Ionospheric Mapping (GIM) software developed at the Jet Propulsion Laboratory. This new capability is designed to estimate receiver biases for all stations. We solve for the instrumental biases by modeling the ionospheric delay and removing it from the observation equation using precomputed GIM maps. The precomputed GIM maps rely on 200 globally distributed GPS receivers to establish the “background” used to model the ionosphere at the remaining 800 GPS sites.