Premium
Localized aurora beyond the auroral oval
Author(s) -
Frey Harald U.
Publication year - 2007
Publication title -
reviews of geophysics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 8.087
H-Index - 156
eISSN - 1944-9208
pISSN - 8755-1209
DOI - 10.1029/2005rg000174
Subject(s) - plasmasphere , magnetopause , geophysics , solar wind , physics , particle acceleration , plasma sheet , interplanetary magnetic field , earth's magnetic field , electron , electron precipitation , magnetosphere , night sky , plasma , magnetic field , astronomy , quantum mechanics
Aurora is the result of the interaction between precipitating energetic electrons and protons with the upper atmosphere. Viewed from space, it generally occurs in continuous and diffuse ovals of light around the geomagnetic poles. Additionally, there are localized regions of aurora that are unrelated to the ovals and exhibit different morphological, spatial, and temporal properties. Some of these localized aurorae are detached from the oval poleward or equatorward of it. Others are located within the oval and are brighter than the surrounding diffuse aurora. Many of them occur only during preferred solar wind conditions and orientations of the interplanetary magnetic field. This review describes the different localized aurorae and their particle sources in the plasma sheet, at the plasmapause, or at the magnetopause. Their origin is still not completely understood, and the study of aurorae can teach a great deal about their underlying physical processes of reconnection, electrostatic acceleration, or wave‐particle interactions.