Open Access
Ridging, strength, and stability in high‐resolution sea ice models
Author(s) -
Lipscomb William H.,
Hunke Elizabeth C.,
Maslowski Wieslaw,
Jakacki Jaromir
Publication year - 2007
Publication title -
journal of geophysical research: oceans
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2005jc003355
Subject(s) - sea ice , stability (learning theory) , mechanics , exponential function , geology , flow (mathematics) , environmental science , materials science , mathematics , climatology , physics , mathematical analysis , computer science , machine learning
In multicategory sea ice models the compressive strength of the ice pack is often assumed to be a function of the potential energy of pressure ridges. This assumption, combined with other standard features of ridging schemes, allows the ice strength to change dramatically on short timescales. In high‐resolution (∼10 km) sea ice models with a typical time step (∼1 hour), abrupt strength changes can lead to large internal stress gradients that destabilize the flow. The unstable flow is characterized by large oscillations in ice concentration, thickness, strength, velocity, and strain rates. Straightforward, physically motivated changes in the ridging scheme can reduce the likelihood of abrupt strength changes and improve stability. In simple test problems with flow toward and around topography, stability is significantly enhanced by eliminating the threshold fraction G * in the ridging participation function. Use of an exponential participation function increases the maximum stable time step at 10‐km resolution from less than 30 min to about 2 hours. Modifying the redistribution function to build thinner ridges modestly improves stability and also gives better agreement between modeled and observed thickness distributions. Allowing the ice strength to increase linearly with the mean ice thickness improves stability but probably underestimates the maximum stresses.