z-logo
open-access-imgOpen Access
The effect of structural porosity on the ablation of sea ice ridges
Author(s) -
Amundrud Trisha L.,
Melling Humfrey,
Ingram R. Grant,
Allen Susan E.
Publication year - 2006
Publication title -
journal of geophysical research: oceans
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2005jc002895
Subject(s) - keel , geology , ridge , sea ice , porosity , pressure ridge , arctic ice pack , arctic , fast ice , geomorphology , petrology , antarctic sea ice , oceanography , geotechnical engineering , paleontology
Observations reveal that the decrease in ice thickness through melting in summer is much more rapid for ridges than for surrounding level ice. A physical model that represents internal melting within ridge keels has been developed to explain this observed draft‐dependent ablation for first‐year pack ice in the Beaufort Sea. The porous structure of a ridge keel permits percolation of a substantial fraction of the oncoming oceanic flow, up to 20% for a feature with 30% porosity and 9‐m draft. The percolating flow delivers oceanic heat to a large surface area deep within the keel and increases melt rates relative to surrounding level ice by a factor of 5 when seawater temperatures are 0.18 degrees above freezing. Melt rates are sensitive to the internal geometry of ridges through keel porosity and block dimensions, characteristics that vary widely between ridge features. However, the average rate of melting as a function of draft, calculated for a realistic population of keels with average cross‐sectional shape and differing draft, has the same draft‐dependence as the observations. This concurrence suggests that the process of internal melting may be dominant in the ablation of ridged ice. In addition, internal melting during the summer may well hasten structural consolidation of surviving ridge keels through freezing during the following winter. It appears that the evolution of the thickest ice within the Arctic ice pack is dependent on the small‐scale structural characteristics of the ridged ice and its interaction with the upper layer of the ocean.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here