
Deglacial sea surface temperatures of the western tropical Pacific: A new look at old coral
Author(s) -
Cohen Anne L.,
Hart Stanley R.
Publication year - 2004
Publication title -
paleoceanography
Language(s) - English
Resource type - Journals
eISSN - 1944-9186
pISSN - 0883-8305
DOI - 10.1029/2004pa001084
Subject(s) - aragonite , foraminifera , geology , sea surface temperature , oceanography , porites , coral , mineralogy , benthic zone , calcite
Using Secondary Ion Mass Spectrometry (SIMS) ion microprobe techniques, we generated annual Sr/Ca cycles with subweekly resolution from chunks of Porites coral retrieved from a Tahiti barrier reef drill core (149°W, 17°S), representing the period 13,650 to 13,100 years B.P. The centers of pristine skeletal septa were selectively targeted with a 10 μm diameter ion beam spot, avoiding adjacent pore spaces occupied by secondary aragonite needles. Applying a Sr/Ca–sea surface temperature (SST) calibration equation derived from modern Tahiti Porites having the same low growth rate as the fossil specimens, we obtained SSTs ∼0.5°–1.5°C cooler during the Bølling‐Allerod relative to the present day, with no significant change in seasonality. On the contrary, we estimate that analysis of bulk samples would yield excessively cool Sr/Ca‐based SST estimates due to the occupation by secondary aragonite crystals of up to 50% of the skeletal pore space in the ancient samples. We find that growth rate effects on coral Sr/Ca further depress the apparent mean annual derived SSTs (by >3°C) and amplify the apparent seasonality by selectively enhancing wintertime cooling. Our microscale analysis of pristine skeleton and application of an appropriate growth‐dependent calibration yield Sr/Ca‐derived SSTs that are in good agreement with those derived from Mg/Ca ratios of calcitic foraminifera which indicate a continuous postglacial warming of the western tropical Pacific, in phase with the warming of the tropical Atlantic.