Understanding the long‐term variability of African dust transport across the Atlantic as recorded in both Barbados surface concentrations and large‐scale Total Ozone Mapping Spectrometer (TOMS) optical thickness
Author(s) -
Chiapello Isabelle,
Moulin Cyril,
Prospero Joseph M.
Publication year - 2005
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2004jd005132
Subject(s) - total ozone mapping spectrometer , tropical atlantic , mineral dust , environmental science , north atlantic oscillation , climatology , satellite , spatial variability , atmospheric sciences , geology , geography , ozone layer , stratosphere , aerosol , sea surface temperature , meteorology , aerospace engineering , statistics , mathematics , engineering
The interannual variability of African dust transport over the north tropical Atlantic is monitored using in situ surface concentrations measurements performed at Barbados since 1966, along with the Total Ozone Mapping Spectrometer (TOMS) and Meteosat dust optical thickness (DOT) records covering the last two decades. Despite their differences in spatial coverage, the two dust records are in good agreement at both monthly and annual timescales over the 22 years of common operation. This demonstrates that the Barbados dust record is representative of the year‐to‐year variability of dust export over the north tropical Atlantic during both winter and summer. The satellite DOT are used to assess the characteristics of the impact of climate factors, i.e., North Atlantic Oscillation (NAO) and Sahel drought, on dust emission and export as a function of season, and in terms of spatial extend of their influence. The analysis shows a large regional impact of Sahel drought on dust emissions and transport both in winter and in summer, whereas the influence of the NAO dominates the winter export and is more geographically limited to the eastern Atlantic north of 15°N, and possibly some localized source regions (southern Mauritania and the Bodele depression). Overall, the combination of the 35 years of Barbados measurements of African dust with 22 years of satellite dust survey over the Atlantic highlights very high dust loads in the mid‐1980s related to the severe Sahel drought (maximum impact in 1983) and persistently high dusty conditions in the 1990s, most probably due to the continuation of relatively dry conditions in Sahel in the recent years.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom