
Planetary foreshock radio emissions
Author(s) -
Kuncic Zdenka,
Cairns Iver H.
Publication year - 2005
Publication title -
journal of geophysical research: space physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2004ja010953
Subject(s) - foreshock , jovian , solar wind , physics , geophysics , interplanetary spaceflight , astrobiology , jupiter (rocket family) , bow shock (aerodynamics) , saturn , astronomy , geology , planet , shock wave , seismology , plasma , space exploration , aftershock , mechanics , quantum mechanics
The electron foreshock regions upstream of Earth's bow shock and upstream of traveling interplanetary shocks are known to be propitious sites for a variety of energetic particle and plasma wave phenomena, including radio emissions. A quantitative theoretical model has been developed for radio emissions associated with the terrestrial foreshock and for type II radio bursts associated with interplanetary shocks. Here, we generalize this model and apply it to other planetary foreshocks. We present predictions for the levels of planetary foreshock radio emissions and compare these with observations by past and present space missions. One key result is that Mercury can be a strong source of foreshock radio emissions, and this prediction may be testable with the anticipated BepiColombo space mission. Although the terrestrial foreshock radio emissions are the most detectable with existing instruments, our results predict that they are the second strongest in absolute terms, following the Jovian foreshock emissions. Indeed, we predict that the radio instrument on board Ulysses should have detected Jovian foreshock radio emissions, and we suggest that there is some evidence in the data to support this. We also suggest that Cassini was potentially capable of detecting foreshock emissions from Venus during its gravity‐assist flybys and may possibly be capable of detecting foreshock emissions from Saturn under favorable solar wind conditions.