z-logo
Premium
Persistence of topographic controls on the spatial distribution of snow in rugged mountain terrain, Colorado, United States
Author(s) -
Erickson Tyler A.,
Williams Mark W.,
Winstral Adam
Publication year - 2005
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1029/2003wr002973
Subject(s) - terrain , snow , elevation (ballistics) , wind speed , spatial distribution , environmental science , geology , physical geography , meteorology , remote sensing , geomorphology , geography , cartography , mathematics , geometry
We model the spatial distribution of snow depth across a wind‐dominated alpine basin using a geostatistical approach with a complex variable mean. Snow depth surveys were conducted at maximum accumulation from 1997 through 2003 in the 2.3 km 2 Green Lakes Valley watershed in Colorado. We model snow depth as a random function that can be decomposed into a deterministic trend and a stochastic residual. Three snow depth trends were considered, differing in how they model the effect of terrain parameters on snow depth. The terrain parameters considered were elevation, slope, potential radiation, an index of wind sheltering, and an index of wind drifting. When nonlinear interactions between the terrain parameters were included and a multiyear data set was analyzed, all five terrain parameters were found to be statistically significant in predicting snow depth, yet only potential radiation and the index of wind sheltering were found to be statistically significant for all individual years. Of the five terrain parameters considered, the index of wind sheltering was found to have the greatest effect on predicted snow depth. The methodology presented in this paper allows for the characterization of the spatial correlation of model residuals for a variable mean model, incorporates the spatial correlation into the optimization of the deterministic trend, and produces smooth estimate maps that may extrapolate above and below measured values.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here