Trends in high northern latitude soil freeze and thaw cycles from 1988 to 2002
Author(s) -
Smith Nicole V,
Saatchi Sassan S.,
Randerson James T.
Publication year - 2004
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2003jd004472
Subject(s) - tundra , environmental science , evergreen , growing season , larch , taiga , biome , latitude , northern hemisphere , climatology , boreal , atmospheric sciences , shrub , physical geography , ecosystem , geography , ecology , geology , forestry , biology , geodesy
In boreal and tundra ecosystems the freeze state of soils limits rates of photosynthesis and respiration. Here we develop a technique to identify the timing of freeze and thaw transitions of high northern latitude land areas using satellite data from the Scanning Multichannel Microwave Radiometer (SMMR) and Special Sensor Microwave/Imager (SSM/I). Our results indicate that in Eurasia there was a trend toward earlier thaw dates in tundra (−3.3 ± 1.8 days/decade) and larch biomes (−4.5 ± 1.8 days/decade) over the period 1988–2002. In North America there was a trend toward later freeze dates in evergreen conifer forests by 3.1 ± 1.2 days/decade that led, in part, to a lengthening of the growing season by 5.1 ± 2.9 days/decade. The growing season length in North American tundra increased by 5.4 ± 3.1 days/decade. Despite the trend toward earlier thaw dates in Eurasian larch forests, the growing season length did not increase because of parallel changes in timing of the fall freeze (−5.4 ± 2.1 days/decade), which led to a forward shift of the growing season. Thaw timing was negatively correlated with surface air temperatures in the spring, whereas freeze timing was positively correlated with surface air temperatures in the fall, suggesting that surface air temperature is one of several factors that determines the timing of soil thaw and freeze. The high spatial resolution, frequent temporal coverage, and duration of the SMMR and SSM/I satellite records makes them suitable for rigorous time series analysis and change detection in northern terrestrial ecosystems.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom