z-logo
open-access-imgOpen Access
Error analysis for tropospheric NO 2 retrieval from space
Author(s) -
Boersma K. F.,
Eskes H. J.,
Brinksma E. J.
Publication year - 2004
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2003jd003962
Subject(s) - troposphere , albedo (alchemy) , environmental science , a priori and a posteriori , meteorology , trace gas , tropospheric ozone , aerosol , remote sensing , stratosphere , atmospheric sciences , column (typography) , mathematics , geology , physics , geometry , epistemology , art , philosophy , connection (principal bundle) , performance art , art history
Retrieval uncertainty estimates for vertical tropospheric NO 2 columns based on theoretical error source discussions combined with actual Global Ozone Monitoring Experiment (GOME) observations are presented. Contributions to the total retrieval uncertainty are divided into three categories: (1) errors caused by measurement noise and spectral fitting, affecting the slant column density, (2) errors related to the separation of stratospheric and tropospheric NO 2 affecting the estimate of the stratospheric slant column, and (3) errors due to uncertainty in model parameters such as clouds, surface albedo, and a priori profile shape, affecting the tropospheric air mass factor. Furthermore, it is shown that a correction for the effective temperature of the trace gas is essential and that a correction for the presence of aerosols needs to be accompanied by aerosol corrections to the cloud retrieval. A discussion of the error components and total retrieval uncertainty is given for March 1997. Tropospheric NO 2 columns can be retrieved with a precision of 35–60% over regions with a large contribution of the troposphere to the total column. This error estimate demonstrates the need for highly accurate albedo maps, cloud retrieval schemes, and realistic a priori NO 2 profile shapes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom