z-logo
open-access-imgOpen Access
Geodetic and seismic constraints on some seismogenic zone processes in Costa Rica
Author(s) -
Norabuena Edmundo,
Dixon Timothy H.,
Schwartz Susan,
DeShon Heather,
Newman Andrew,
Protti Marino,
Gonzalez Victor,
Dorman LeRoy,
Flueh Ernst R.,
Lundgren Paul,
Pollitz Fred,
Sampson Dan
Publication year - 2004
Publication title -
journal of geophysical research: solid earth
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2003jb002931
Subject(s) - geology , seismology , subduction , forearc , north american plate , lithosphere , block (permutation group theory) , décollement , plate tectonics , geodesy , tectonics , geometry , mathematics
New seismic and geodetic data from Costa Rica provide insight into seismogenic zone processes in Central America, where the Cocos and Caribbean plates converge. Seismic data are from combined land and ocean bottom deployments in the Nicoya peninsula in northern Costa Rica and near the Osa peninsula in southern Costa Rica. In Nicoya, inversion of GPS data suggests two locked patches centered at 14 ± 2 and 39 ± 6 km depth. Interplate microseismicity is concentrated in the more freely slipping intermediate zone, suggesting that small interseismic earthquakes may not accurately outline the updip limit of the seismogenic zone, the rupture zone for future large earthquakes, at least over the short (∼1 year) observation period. We also estimate northwest motion of a coastal “sliver block” at 8 ± 3 mm/yr, probably related to oblique convergence. In the Osa region to the south, convergence is orthogonal to the trench. Cocos‐Caribbean relative motion is partitioned here, with ∼8 cm/yr on the Cocos‐Panama block boundary (including a component of permanent shortening across the Fila Costeña fold and thrust belt) and ∼1 cm/yr on the Panama block–Caribbean boundary. The GPS data suggest that the Cocos plate–Panama block boundary is completely locked from ∼10–50 km depth. This large locked zone, as well as associated forearc and back‐arc deformation, may be related to subduction of the shallow Cocos Ridge and/or younger lithosphere compared to Nicoya, with consequent higher coupling and compressive stress in the direction of plate convergence.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom