Premium
Modeling El Niño and its tropical teleconnections during the last glacial‐interglacial cycle
Author(s) -
OttoBliesner Bette L.,
Brady Esther C.,
Shin SangIk,
Liu Zhengyu,
Shields Christine
Publication year - 2003
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2003gl018553
Subject(s) - climatology , last glacial maximum , teleconnection , interglacial , holocene , thermocline , walker circulation , geology , sea surface temperature , upwelling , glacial period , water cycle , oceanography , precipitation , environmental science , atmospheric sciences , geography , geomorphology , el niño southern oscillation , ecology , meteorology , biology
Simulations with the NCAR Climate System Model (CSM), a global, coupled ocean‐atmosphere‐sea ice model, for the last glacial‐interglacial cycle reproduce recent estimates, based on alkenones and Mg/Ca ratios, of sea surface temperature (SST) changes and gradients in the tropical Pacific and predict weaker El Niños/La Niñas compared to present for the Holocene and stronger El Niños/La Niñas for the Last Glacial Maximum (LGM). Changes for the LGM (Holocene) are traced to a weakening (strengthening) of the tropical Pacific zonal SST gradient, wind stresses, and upwelling and a sharpening (weakening) of the tropical thermocline. Results suggest that proxy evidence of weaker precipitation variability in New Guinea and Ecuador are explained not only by changes in El Niño/La Niña but also changes in the atmospheric circulation and hydrologic cycle.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom