z-logo
Premium
Crystallization of atmospheric sulfate‐nitrate‐ammonium particles
Author(s) -
Martin Scot T.,
Schlenker Julie C.,
Malinowski Adam,
Hung HuiMing,
Rudich Yi
Publication year - 2003
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2003gl017930
Subject(s) - sulfate , ammonium sulfate , relative humidity , nitrate , nucleation , particle (ecology) , crystallization , aerosol , chemical composition , ammonium nitrate , ammonium , chemistry , mineralogy , atmospheric sciences , environmental chemistry , thermodynamics , geology , physics , oceanography , organic chemistry , chromatography
Relative humidity (RH) history and chemical composition determine whether atmospheric particles are liquid or solid. Particle physical state affects many climatic and environmental phenomena such as radiative transfer, visibility, and heterogeneous chemistry. Here we report the crystallization RH (CRH) at 293 K of particles throughout the entire sulfate‐nitrate‐ammonium composition space, and the new laboratory data are expressed as an empirical polynomial. Particles with compositions close to ammonium sulfate crystallize near 30% RH. Such particles are common in the boundary layer, including the eastern USA and East Asia though not Europe. Our measurements show the formation of several solids within the same particle for compositions enriched in nitrate or somewhat acidic, although the CRH is under 30%. The CRH for homogeneous nucleation is 40 to 55% below the deliquescence RH (DRH) for most chemical compositions. Our new results provide essential data for the incorporation of particle physical state in global models of chemistry and climate.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom