z-logo
Premium
Variations in flow and transport in thick desert vadose zones in response to paleoclimatic forcing (0–90 kyr): Field measurements, modeling, and uncertainties
Author(s) -
Scanlon Bridget R.,
Keese Kelley,
Reedy Robert C.,
Simunek Jirka,
Andraski Brian J.
Publication year - 2003
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1029/2002wr001604
Subject(s) - groundwater recharge , arid , geology , vadose zone , forcing (mathematics) , infiltration (hvac) , hydrology (agriculture) , environmental science , groundwater , soil water , atmospheric sciences , soil science , aquifer , paleontology , geography , meteorology , geotechnical engineering
An understanding of unsaturated flow and potential recharge in interdrainage semiarid and arid regions is critical for quantification of water resources and contaminant transport. We evaluated system response to paleoclimatic forcing using water potential and Cl profiles and modeling of nonisothermal liquid and vapor flow and Cl transport at semiarid (High Plains, Texas) and arid (Chihuahuan Desert, Texas; Amargosa Desert, Nevada) sites. Infiltration in response to current climatic forcing is restricted to the shallow (∼0.3–3 m) subsurface. Subsurface Cl accumulations correspond to time periods of 9–90 kyr. Bulge‐shaped Cl profiles generally represent accumulation during the Holocene (9–16 kyr). Lower Cl concentrations at depth reflect higher water fluxes (0.04–8.4 mm/yr) during the Pleistocene and earlier times. Low water potentials and upward gradients indicate current drying conditions. Nonisothermal liquid and vapor flow simulations indicate that upward flow for at least 1–2 kyr in the High Plains and for 12–16 kyr at the Chihuahuan and Amargosa desert sites is required to reproduce measured upward water potential gradients and that recharge is negligible (<0.1 mm/yr) in these interdrainage areas.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here