z-logo
open-access-imgOpen Access
Evolution of the NO y ‐N 2 O correlation in the Antarctic stratosphere during 1993 and 1995
Author(s) -
Muscari Giovanni,
de Zafra Robert L.,
Smyshlyaev Sergei
Publication year - 2003
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2002jd002871
Subject(s) - stratosphere , atmospheric sciences , environmental science , forcing (mathematics) , altitude (triangle) , polar , ozone , ozone depletion , sink (geography) , climatology , flux (metallurgy) , ozone layer , meteorology , physics , geology , chemistry , geography , geometry , mathematics , cartography , organic chemistry , astronomy
The sources and sinks of stratospheric reactive nitrogen (NO y ) in the Antarctic are known only qualitatively, because of the very few measurements of NO y available in this region. As a result, the effects of stratospheric NO y short‐ and long‐term changes on the stratospheric concentration of ozone, water vapor, and other climate‐forcing agents are still uncertain. To better understand the annual cycle of polar stratospheric NO y , we estimate its concentration in the Antarctic stratosphere during part of 1993 and throughout 1995. These estimates are obtained at seven potential temperature levels, extending from ∼18 to 30 km of altitude, and are associated with ground‐based measurements of another tracer, N 2 O, in order to produce NO y ‐N 2 O correlation curves that can provide insights on nitrogen sources and sinks. To estimate NO y mixing ratios, we use ground‐based and satellite measurements of major NO y constituents, connected by using air parcel trajectories and supplemented by model calculations of minor contributing species for which no suitable measurements exist. All the available NO y ‐N 2 O correlation points are averaged over three representative seasonal time periods in 1993 and six periods in 1995. Results show very similar correlation curves during the late summer and the fall of 1995, and again during the early spring 1993 compared with the early and late winter of 1995, although there are large seasonal changes due to transport and to condensation of NO y onto polar stratospheric clouds. We calculate a loss from the latter process of ΔN = (6.3 ± 2.6) × 10 7 kg of stratospheric nitrogen in the southern polar vortex during 1995. We also compare our correlation curves with those obtained in the Antarctic stratosphere during the Atmospheric Trace Molecule Spectroscopy mission ATMOS/ATLAS‐3 in November 1994, finding important similarities but also critical differences that suggest that extra‐vortex air is generally not an adequate representation of prewinter inner vortex conditions. Calculations of NO y winter removal in the Antarctic stratosphere which have used extra‐vortex measurements as a surrogate for prewinter conditions may thus have underestimated true NO y removal. Our prewinter NO y estimates in the vortex core match values obtained by atmospheric models that incorporate upper atmospheric sources of NO y , supporting the belief that such sources have a significant effect on polar stratospheric NO y .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here