Premium
El Niño–Southern oscillation and the climate, ecosystems and rivers of Amazonia
Author(s) -
Foley Jonathan A.,
Botta Aurélie,
Coe Michael T.,
Costa Marcos Heil
Publication year - 2002
Publication title -
global biogeochemical cycles
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.512
H-Index - 187
eISSN - 1944-9224
pISSN - 0886-6236
DOI - 10.1029/2002gb001872
Subject(s) - amazon rainforest , environmental science , ecosystem , precipitation , drainage basin , la niña , hydrology (agriculture) , discharge , structural basin , water cycle , water balance , carbon cycle , flooding (psychology) , climatology , el niño southern oscillation , geography , ecology , geology , paleontology , cartography , geotechnical engineering , meteorology , biology , psychology , psychotherapist
The El Niño–Southern Oscillation (ENSO) phenomenon is one of the dominant drivers of environmental variability in the tropics. In this study, we examine the connections between ENSO and the climate, ecosystem carbon balance, surface water balance, and river hydrology of the Amazon and Tocantins river basins in South America. First we examine the climatic variability associated with ENSO. We analyze long‐term historical climate records to document the “average” climatic signature of the El Niño and La Niña phases of the ENSO cycle. Generally speaking, the “average El Niño” is drier and warmer than normal in Amazonia, while the “average La Niña” is wetter and cooler. While temperature changes are mostly uniform through the whole year and are spatially homogeneous, precipitation changes are stronger during the wet season (January‐February‐March) and are concentrated in the northern and southeastern portions of the basin. Next we use a land surface/ecosystem model (IBIS), coupled to a hydrological routing algorithm (HYDRA), to examine how ENSO affects land surface water and carbon fluxes, as well as changes in river discharge and flooding. The model results suggest several responses to ENSO: (1) During the average El Niño, there is an anomalous source of CO 2 from terrestrial ecosystems, mainly due to a decreased net primary production (NPP) in the north of the basin. There is also a decrease in river discharge along many of the rivers in the basin, which causes a decrease in flooded area along the main stem of the Amazon. (2) During the average La Niña, there is an anomalous sink of CO 2 into terrestrial ecosystems, largely due to an increase in NPP in the northern portion of the basin. In addition, there is a large increase in river discharge in the Amazon basin, especially from the northern and western tributaries. There is a corresponding increase in flooded area, largely in the northern rivers. These results illustrate that changes in water and carbon balance associated with ENSO have complex, spatially heterogeneous features across the basin. This underscores the need for comprehensive analyses, using long‐term observational data and model simulations, of regional environmental systems and their response to climatic variability.