z-logo
Premium
Frame‐based Gaussian beam summation method: Theory and applications
Author(s) -
Lugara Delphine,
Letrou Christine,
Shlivinski Amir,
Heyman Ehud,
Boag Amir
Publication year - 2003
Publication title -
radio science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.371
H-Index - 84
eISSN - 1944-799X
pISSN - 0048-6604
DOI - 10.1029/2001rs002593
Subject(s) - gaussian , representation (politics) , frame (networking) , monochromatic color , beam (structure) , gaussian beam , mathematics , optics , physics , computer science , telecommunications , quantum mechanics , politics , political science , law
A discrete phase‐space Gaussian beam summation representation for electromagnetic radiation from a planar source is presented. The formulation is based on the theory of frames and removes the inherent difficulties of the Gabor representation for both monochromatic and ultra wideband (UWB) fields. For monochromatic fields the frame‐based representation leads to an efficient and flexible discrete Gaussian beam representation with local and stable expansion coefficients. For UWB fields a novel scaling of the frame overcompleteness parameter is introduced, leading to a new expansion that utilizes a discrete frequency‐independent set of beams over the entire relevant spectrum. It is demonstrated that the isodiffracting Gaussian beams provide the snuggest frame representation over the entire spectrum. The rules for choosing the “optimal” frame and beam parameters for a given problem are discussed and demonstrated on application examples.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here