z-logo
open-access-imgOpen Access
Dating the Vostok ice core by an inverse method
Author(s) -
Parrenin Frédéric,
Jouzel Jean,
Waelbroeck Claire,
Ritz Catherine,
Barnola JeanMarc
Publication year - 2001
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2001jd900245
Subject(s) - ice core , geology , deglaciation , interglacial , climatology , orbital forcing , glacial period , ice sheet , physical geography , paleontology , geomorphology , geography
Using the chronological information available in the Vostok records, we apply an inverse method to assess the quality of the Vostok glaciological timescale. The inversion procedure provides not only an optimized glaciological timescale and its confidence interval but also a reliable estimate of the duration of successive events. Our results highlight a disagreement between orbitally tuned and glaciological timescales below ∼2700 m (i.e., ∼250 kyr B.P., thousands of years before present). This disagreement could be caused by some discontinuity in the spatial variation of accumulation upstream of Vostok. Moreover, the stratigraphic datings of central Greenland ice cores (GRIP and GISP2) appear older than our optimized timescale for the late glacial. This underlines an unconsistency between the physical assumptions used to construct the Vostok glaciological timescale and the stratigraphic datings. The inverse method allows the first assessment of the evolution of the phase between Vostok climatic records and insolation. This phase significantly varies with time which gives a measure of the nonlinear character of the climatic system and suggests that the climatic response to orbital forcing is of different nature for glacial and interglacial periods. We confirm that the last interglacial, as recorded in the Vostok deuterium record, was long (16.2±2 kyr, thousands of years). However, midtransition of termination II occurred at 133.4±2.5 kyr BP, which does not support the recent claim for an earlier deglaciation. Finally, our study suggests that temperature changes are correctly estimated when using the spatial present‐day deuterium‐temperature relationship to interpret the Vostok deuterium record.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here