z-logo
open-access-imgOpen Access
Significance of multidimensional radiative transfer effects measured in surface fluxes at an Antarctic coastline
Author(s) -
Lubin Dan,
Ricchiazzi Paul,
Payton Allison,
Gautier Catherine
Publication year - 2002
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2001jd002030
Subject(s) - overcast , albedo (alchemy) , environmental science , radiometer , atmospheric sciences , radiative transfer , shortwave , cirrus , downwelling , atmospheric radiative transfer codes , cloud cover , remote sensing , geology , sky , meteorology , oceanography , upwelling , geography , physics , cloud computing , art , quantum mechanics , performance art , computer science , art history , operating system
At a coastal high‐latitude site, multiple reflection of photons between the high albedo surface and an overlying cloud can enhance the downwelling shortwave flux out over the adjacent open water to a distance of several kilometers. This coastal albedo effect has been predicted by theoretical radiative transfer studies and has also been measured under ideal conditions. In this study, three multispectral solar ultraviolet radiometers were deployed in the vicinity of Palmer Station, Antarctica (64° 46′S, 64° 04′W) to determine the prevalence of the coastal albedo effect under the region's natural variability in cloud cover. One radiometer was deployed near the base of a glacier, and the other two radiometers were deployed on Janus Island and Outcast Island, islets ∼2.8 km (1.5 nautical miles) and 5.6 km (3 nautical miles) distant from Palmer Station, respectively. The radiometers were operated simultaneously for 16 days during late December 1999 and January 2000. Under all cloudy sky conditions sampled by this experiment the coastal albedo effect is seen in the data 60% of the time, in the form of a decreasing gradient in surface flux from Palmer Station through Janus and Outcast Islands. During the other 40% of the cloudy sky measurements, local cloud inhomogeneity obscured the coastal albedo effect. The effect is more apparent under overcast layers that appear spatially uniform and occurs 86% of the time under the low overcast decks sampled. The presence of stratus fractus of bad weather, under higher overcast layers, obscures the coastal albedo effect such that it occurs only 43% of the time. A wavelength dependence is noted in the data under optically thin cloud cover: the ratio of a flux measured at an islet to that measured at the station increases with wavelength. This wavelength dependence can be explained by plane‐parallel radiative transfer theory.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here