
A pole to pole west Pacific atmospheric teleconnection during August
Author(s) -
Hines Keith M.,
Bromwich David H.
Publication year - 2002
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2001jd001335
Subject(s) - teleconnection , climatology , middle latitudes , geology , subtropical ridge , northern hemisphere , subtropics , southern hemisphere , latitude , sea surface temperature , atmospheric sciences , monsoon , precipitation , anomaly (physics) , oceanography , geography , meteorology , el niño southern oscillation , geodesy , physics , condensed matter physics , fishery , biology
An observational analysis is presented that reveals an August teleconnection involving both the Northern Hemisphere (NH) and the Southern Hemisphere (SH). The teleconnection includes three primary anomalies in the monthly average surface pressure field: (1) a high southern latitude component including Wilkes Land, Antarctica, the nearby Southern Ocean, and the Ross Sea, (2) a SH midlatitude component near Australia and New Zealand, and (3) a NH subtropical component over the extreme western Pacific Ocean. Surface pressure for the SH high‐latitude anomaly is negatively correlated to the other two primary anomalies. The SH midlatitude and NH subtropical component are positively correlated. Furthermore, the teleconnection is correlated to surface pressure near the Aleutian Islands. The teleconnection anomalies result from tropical convection on intraseasonal timescales. Monsoon rainfall over East Asia during August is correlated to the teleconnection. Furthermore, August precipitation at several other locations in the NH and SH is modulated by the teleconnection. Two different sets of numerical experiments with the National Center for Atmospheric Research (NCAR) Community Climate Model version 2 (CCM2) show a similar‐appearing teleconnection during late boreal summer. The modeled teleconnection, however, is forced from high southern latitudes.