z-logo
open-access-imgOpen Access
A semiempirical model of the normalized radar cross‐section of the sea surface 1. Background model
Author(s) -
Kudryavtsev Vladimir,
Hauser Danièle,
Caudal Gérard,
Chapron Bertrand
Publication year - 2003
Publication title -
journal of geophysical research: oceans
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2001jc001003
Subject(s) - bragg's law , breaking wave , radar , wind wave , physics , wavelength , radar cross section , azimuth , scattering , optics , geology , computational physics , wave propagation , diffraction , computer science , telecommunications , thermodynamics
Multiscale composite models based on the Bragg theory are widely used to study the normalized radar cross‐section (NRCS) over the sea surface. However, these models are not able to correctly reproduce the NRCS in all configurations and wind wave conditions. We have developed a physical model that takes into account, not only the Bragg mechanism, but also the non‐Bragg scattering mechanism associated with wave breaking. A single model was built to explain on the same physical basis both the background behavior of the NRCS and the wave radar Modulation Transfer Function (MTF) at HH and VV polarization. The NRCS is assumed to be the sum of a Bragg part (two‐scale model) and of a non‐Bragg part. The description of the sea surface is based on the short wind wave spectrum (wavelength from few millimeters to few meters) developed by Kudryavtsev et al. [1999] and wave breaking statistics proposed by Phillips [1985]. We assume that non‐Bragg scattering is supported by quasi‐specular reflection from very rough wave breaking patterns and that the overall contribution is proportional to the white cap coverage of the surface. A comparison of the model NRCS with observations is presented. We show that neither pure Bragg nor composite Bragg model is able to reproduce observed feature of the sea surface NRCS in a wide range of radar frequencies, wind speeds, and incidence and azimuth angles. The introduction of the non‐Bragg part in the model gives an improved agreement with observations. In Part 2, we extend the model to the wave radar MTF problem.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom