Premium
Return of the cold halocline layer to the Amundsen Basin of the Arctic Ocean: Implications for the sea ice mass balance
Author(s) -
Björk G.,
Söderkvist J.,
Winsor P.,
Nikolopoulos A.,
Steele M.
Publication year - 2002
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2001gl014157
Subject(s) - halocline , oceanography , geology , sea ice , circumpolar deep water , mixed layer , ridge , water mass , arctic , fast ice , arctic ice pack , thermohaline circulation , antarctic sea ice , climatology , north atlantic deep water , paleontology , salinity
CTD measurements from the Arctic Ocean 2001 expedition reveal that the cold halocline layer (CHL) has returned to the Amundsen Basin at a position close to that found during the Oden'91 expedition. River water from the Siberian shelves formed a strong freshwater front in the Amundsen Basin, extending from the Gakkel Ridge to the Lomonosov Ridge. Furthermore, we show from model computations that the presence of a CHL may increase winter sea ice growth by 0.25 m over one season compared to a case with a non‐existing CHL due to increased vertical heat flux from the warm Atlantic water. The difference in sea ice growth is due to a much shallower winter convection with a CHL present, which is not able to reach into the warm Atlantic layer, resulting in a considerably smaller oceanic heat flux.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom