z-logo
open-access-imgOpen Access
A major perturbation of the carbon cycle before the Ghaub glaciation (Neoproterozoic) in Namibia: Prelude to snowball Earth?
Author(s) -
Halverson Galen P.,
Hoffman Paul F.,
Schrag Daniel P.,
Kaufman Alan J.
Publication year - 2002
Publication title -
geochemistry, geophysics, geosystems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.928
H-Index - 136
ISSN - 1525-2027
DOI - 10.1029/2001gc000244
Subject(s) - snowball earth , geology , glacial period , paleontology , context (archaeology) , anomaly (physics) , physics , condensed matter physics
A large (11–15‰) negative shift in δ 13 C is observed in shallow water carbonates directly beneath Neoproterozoic glacial deposits (or correlative disconformity) in northwest Namibia ascribed to a snowball Earth. Reproducibility and stratigraphic concordance of this anomaly in 16 sections across the ancient continental shelf support a primary origin, and field relations show it predates the fall in sea level associated with the Ghaub glaciation. We crudely estimate the duration of the isotopic shift as ∼0.6 × 10 6 years from a simple thermal subsidence model. Similar or larger δ 13 C anomalies are found directly beneath Neoproterozoic glacial units in Australia, Canada, China, Scotland, and Svalbard. After considering conventional interpretations for negative δ 13 C anomalies, we conclude that a prolonged methane release to the atmosphere is most consistent with the timescale, magnitude, and geological context of the anomaly in Namibia. Counterintuitively, an anomalous methane flux that is sustained for 100s kyr may be consistent with a snowball glaciation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here