z-logo
Premium
Benefit‐cost estimation for alternative drinking water maximum contaminant levels
Author(s) -
Gurian Patrick L.,
Small Mitchell J.,
Lockwood John R.,
Schervish Mark J.
Publication year - 2001
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1029/2000wr900387
Subject(s) - arsenic , environmental science , water source , arsenic contamination of groundwater , environmental engineering , water treatment , surface water , population , statistics , water resource management , environmental health , mathematics , chemistry , medicine , organic chemistry
A simulation model for estimating compliance behavior and resulting costs at U.S. Community Water Suppliers is developed and applied to the evaluation of a more stringent maximum contaminant level (MCL) for arsenic. Probability distributions of source water arsenic concentrations are simulated using a statistical model conditioned on system location (state) and source water type (surface water or groundwater). This model is fit to two recent national surveys of source waters, then applied with the model explanatory variables for the population of U.S. Community Water Suppliers. Existing treatment types and arsenic removal efficiencies are also simulated. Utilities with finished water arsenic concentrations above the proposed MCL are assumed to select the least cost option compatible with their existing treatment from among 21 available compliance strategies and processes for meeting the standard. Estimated costs and arsenic exposure reductions at individual suppliers are aggregated to estimate the national compliance cost, arsenic exposure reduction, and resulting bladder cancer risk reduction. Uncertainties in the estimates are characterized based on uncertainties in the occurrence model parameters, existing treatment types, treatment removal efficiencies, costs, and the bladder cancer dose‐response function for arsenic.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here