Open Access
Behavior of ultrafine particles in continental and marine air masses at a rural site in the United Kingdom
Author(s) -
Coe Hugh,
Williams Paul I.,
McFiggans Gordon,
Gallagher Martin W.,
Beswick Karl M.,
Bower Keith N.,
Choularton Tom W.
Publication year - 2000
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2000jd900234
Subject(s) - ultrafine particle , nucleation , particle (ecology) , aerosol , morning , particle number , particle size , condensation , materials science , atmospheric sciences , meteorology , chemistry , nanotechnology , oceanography , physics , plasma , geology , organic chemistry , quantum mechanics , astronomy
Particle size distribution measurements were made at a coastal site in the United Kingdom. These are presented, and the behavior of recently formed ultrafine particles is discussed. No ultrafine particles were observed in maritime air masses; however, 3 to 7 nm particles were frequently observed at enhanced concentrations when the wind direction was from the land. Their formation was favored at lower temperatures, when 1 ppbv or more of SO 2 was present and in air masses that had not been aged extensively. On days when enhanced ultrafine particle concentrations were observed, 3 nm particles increased sharply in the morning, approximately 30 to 90 min after the UV solar flux first increased. By early afternoon the ultrafine particle concentration had returned to background levels. Rapid measurements of 5 nm particles showed no correlation with turbulence parameters, although the boundary layer mixing scales were similar to growth times of freshly nucleated particles to 5 nm diameter. However, ultrafine particle concentrations do correlate with the availability of sulphuric acid vapor. A delay of approximately an hour between the increase of H 2 SO 4 in the morning and a large increase in ultrafine particle concentrations is due to the growth of particles to observable sizes, not the nucleation process itself. An analysis of the timescales for growth showed that coagulation may be important immediately after the particles have nucleated but its effectiveness reduces as number concentration falls. Conversely, growth by condensation is initially slow due to the Kelvin effect but increases in importance as the particles reach observable sizes.