z-logo
open-access-imgOpen Access
Equivalent channel network model for permeability and electrical conductivity of fracture networks
Author(s) -
Van Siclen Clinton D.
Publication year - 2002
Publication title -
journal of geophysical research: solid earth
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2000jb000057
Subject(s) - tortuosity , exponent , power law , fracture (geology) , permeability (electromagnetism) , materials science , planar , mechanics , hydraulic conductivity , geotechnical engineering , porosity , geology , geometry , physics , mathematics , soil science , computer science , chemistry , soil water , philosophy , biochemistry , linguistics , statistics , computer graphics (images) , membrane
It is remarkable that the permeability k and electrical conductivity σ of saturated, fractured rock exhibit a power law relationship with exponent r as pressure is applied to the rock. To understand this behavior, the fracture network is viewed as a collection of connected, planar fractures. This allows the construction of algebraic expressions for the transport properties of the fracture network, in which the local effective properties, namely, the hydraulic aperture d h and the electric aperture d e of the representative planar fracture (the “equivalent channel”), are distinguished from the network properties (e.g., fracture connectivity) parameterized by the tortuosity factors τ h and τ e . This “equivalent channel network model” reproduces the observed power law behavior on the conditions that d h 3 ∝ d e r and τ h ∝ τ e r over the range of applied pressures. The first condition is met, as demonstrated by calculations for a variety of simulated planar fractures using the Reynolds equations for fluid and current flow. The value of the exponent r is found to indicate the degree to which the fracture resembles a porous medium but cannot otherwise identify fracture surface or aperture characteristics. No direct evidence currently exists to support the second condition; however, such a power law relationship has been demonstrated elsewhere for simulated porous media.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here