z-logo
Premium
Implications of depleted flux tubes in the Jovian magnetosphere
Author(s) -
Russell C. T.,
Kivelson M. G.,
Kurth W. S.,
Gurnett D. A.
Publication year - 2000
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2000gl003815
Subject(s) - magnetosphere , jovian , physics , flux tube , flux (metallurgy) , plasma , torus , magnetic flux , astrophysics , magnetic field , geophysics , atmospheric sciences , saturn , materials science , nuclear physics , geometry , mathematics , quantum mechanics , planet , metallurgy
A rare but persistent phenomenon in the jovian magnetosphere is the occurrence of apparently depleted flux tubes, whose magnetic pressures are significantly above ambient levels. These flux tubes occur about 0.25% of the observing time in the region of the Io torus in the Galileo high resolution data. The importance of these tubes is that they can return to the inner magnetosphere the magnetic flux that has been convected radially outward with the iogenic plasma to the tail. The paucity of these tubes is consistent with the expected flux return rates if the tubes are moving inward at an average rate of about 5–10 km/s in the torus. Depleted flux tubes have yet to be observed inside of the Io orbit where the plasma beta is lower than in the hot torus. Estimates of the plasma density outside the tube from plasma wave measurements enable the average perpendicular temperature to be obtained from the magnetic field change. Extrapolating this temperature back to Io, we obtain an average ion temperature of approximately 60 eV. These values are generally consistent with earlier Voyager observations but on the low side of their range of uncertainty, and agree quite well with contemporaneous Galileo measurements where these are available.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here