Premium
The onset and association of CMEs with sigmoidal active regions
Author(s) -
Glover Alexi,
Ranns Neale D. R.,
Harra Louise K.,
Culhane J. Leonard
Publication year - 2000
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2000gl000018
Subject(s) - sigmoid function , inverse , association (psychology) , term (time) , astrophysics , physics , mathematics , artificial intelligence , computer science , psychology , astronomy , geometry , artificial neural network , psychotherapist
Previous studies of active regions characterised by Soft X‐ray S or inverse‐S morphology [ Canfield et al., 1999], have found these regions to possess a higher probability of eruption. In such cases, CME launch has been inferred using X‐ray proxies to indicate eruption. Active regions observed during 1997, previously categorised as both sigmoidal and eruptive [ Canfield, 1999], have been selected for further study, incorporating SoHO‐LASCO, SoHO‐EIT and ground based H‐alpha data. Our results allow re‐classification into three main categories; sigmoidal, non‐sigmoidal and active regions appearing sigmoidal due to the projection of many loops. Although the reduced dataset size prevents a statistical measure of significance, we note that regions comprising a single S (or inverse‐S) shaped structure are more frequently associated with a CME than those classed as non‐sigmoidal. This motivates the study of a larger dataset and highlights the need for a quantitative observational definition of the term “sigmoid”.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom