Premium
Comparative analysis of black carbon in soils
Author(s) -
Schmidt Michael W. I.,
Skjemstad Jan O.,
Czimczik Claudia I.,
Glaser Bruno,
Prentice Ken M.,
Gelinas Yves,
Kuhlbusch Thomas A. J.
Publication year - 2001
Publication title -
global biogeochemical cycles
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.512
H-Index - 187
eISSN - 1944-9224
pISSN - 0886-6236
DOI - 10.1029/2000gb001284
Subject(s) - soil water , carbon black , magic angle spinning , soot , carbon fibers , elemental analysis , combustion , environmental science , mineralogy , spectral line , chemistry , soil science , materials science , physics , astronomy , composite material , natural rubber , organic chemistry , composite number
Black carbon (BC), produced by incomplete combustion of fossil fuels and vegetation, occurs ubiquitously in soils and sediments. BC exists as a continuum from partly charred material to highly graphitized soot particles, with no general agreement on clear‐cut boundaries of definition or analysis. In a comparative analysis, we measured BC forms in eight soil samples by six established methods. All methods involved removal of the non‐BC components from the sample by thermal or chemical means or a combination of both. The remaining carbon, operationally defined as BC, was quantified via mass balance, elemental composition or by exploiting benzenecarboxylic acids as molecular markers or applying 13 C MAS NMR (magic angle spinning nuclear magnetic resonance) spectroscopy. BC concentrations measured for individual samples vary over 2 orders of magnitude (up to a factor of 571). One possible explanation for this wide range of results is that the individual BC methods rely on operational definitions with clear‐cut but different boundaries and developed for specific scientific questions, whereas BC represents a continuum of materials with widely contrasting physicochemical properties. Thus the methods are inherently designed to analytically determine different parts of the continuum, and it is crucial to know how measurements made by different techniques relate to each other. It is clear from this preliminary comparative analysis that a collection of BC reference materials should be established as soon as possible 1 ) to ensure long‐term intralaboratory and interlaboratory data quality and 2) to facilitate comparative analyses between different analytical techniques and scientific approaches