z-logo
open-access-imgOpen Access
Nature of the Levantine (eastern Mediterranean) crust from multiple‐source Werner deconvolution of Bouguer gravity anomalies
Author(s) -
Khair Kamal,
Tsokas Gregory N.
Publication year - 1999
Publication title -
journal of geophysical research: solid earth
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/1999jb900228
Subject(s) - geology , crust , oceanic crust , continental crust , lithosphere , convergent boundary , bouguer anomaly , seafloor spreading , continental margin , paleontology , basement , oceanic basin , subduction , gravity anomaly , seismology , geophysics , tectonics , civil engineering , engineering , oil field
The nature of the Levantine (eastern Mediterranean) crust has been the subject of controversy for many years, revolving around two hypotheses: the continental crust hypothesis and the oceanic crust hypothesis. The proponents of the first hypothesis suggest that the Levantine (eastern Mediterranean) basin is characterized by a thick sedimentary succession overlying thinned crust of continental origin, through which a number of aborted Mesozoic rifts were etched. However, multiple‐source Werner deconvolution (MSWD) estimates and other geophysical data, integrated with earlier geological and geophysical results, provide further support to the second hypothesis (oceanic crust) and lead to the following conclusions: (1) The depth to Moho ranges from about 20 km to about 28 km below sea level, with an average crustal thickness of about 22 km. (2) The large thickness (about 10 km) of Phanerozoic section leaves only about 12 km of thickness for the igneous/metamorphic (basement) complex. (3) The northern boundary of the Levantine (easternmost Mediterranean) lithosphere is delineated by an arcuate belt of seismic activities along the southern margin of Cyprus. (4) The formation of the Phoenician and Latakia basins and the Iskenderun Bay is probably controlled by the counterclockwise rotation of the lithospheric slices southeast of Cyprus. (5) The apparent absence of magnetic anomaly lineations (reversals) is due probably to the thick Phanerozoic cover, and/or the formation of the oceanic crust during a long magnetic chron.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here