Open Access
Magnetospheric line radiation observations at Halley, Antarctica
Author(s) -
Rodger Craig J.,
Clilverd Mark A.,
Yearby Keith H.,
Smith Andy J.
Publication year - 1999
Publication title -
journal of geophysical research: space physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/1999ja900153
Subject(s) - harmonics , physics , ionosphere , line (geometry) , magnetosphere , amplitude , frequency drift , harmonic , radiation , geophysics , optics , plasma , mathematics , acoustics , geometry , phase locked loop , quantum mechanics , voltage , phase noise
Magnetospheric line Radiation (MLR) events are relatively narrowband VLF signals that sometimes drift in frequency, and have been observed in both ground based and satellite data sets. Line radiation has been attributed by some authors to be power line harmonic radiation (PLHR), generated from harmonics of the power transmission frequency (50 or 60 Hz) and radiated into the ionosphere and magnetosphere by long power lines. We present the result of a survey undertaken on the basis of measurements made of MLR events observed at Halley station, Antarctica (75°30′S, 26°54′W, L ≈ 4.3) in part of June 1995. Particular attention is given to the frequency spacing, drift rates, and amplitude of the MLR lines. MLR is present in 7.0% of the minute‐long VLF recordings made at Halley. The MLR lines rise in frequency as often as they fall. However, these lines do not necessarily rise or fall monotonically and can oscillate while drifting. The Halley MLR has a wide range of line spacings and does not preferentially show spacings near harmonics of electrical transmission frequencies, either 50 Hz or 60 Hz. There is no correlation between the frequency drifts of the local 50 Hz Halley electrical supply and those of the observed MLR lines. The distribution of MLR line spacings observed in the Halley data has a roughly exponential form, suggesting a different mechanism for MLR than for PLHR.