z-logo
Premium
Radiocarbon and stable carbon isotopic evidence for transport and transformation of dissolved organic carbon, dissolved inorganic carbon, and CH 4 in a northern Minnesota peatland
Author(s) -
Chasar L. S.,
Chanton J. P.,
Glaser P. H.,
Siegel D. I.,
Rivers J. S.
Publication year - 2000
Publication title -
global biogeochemical cycles
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.512
H-Index - 187
eISSN - 1944-9224
pISSN - 0886-6236
DOI - 10.1029/1999gb001221
Subject(s) - peat , dissolved organic carbon , bog , methanogenesis , environmental chemistry , carbon cycle , pore water pressure , carbon fibers , organic matter , radiocarbon dating , hydrology (agriculture) , geology , chemistry , ecology , ecosystem , methane , paleontology , materials science , geotechnical engineering , organic chemistry , composite number , composite material , biology
To elucidate the roles of hydrology and vegetation in below ground carbon cycling within peatlands, radiocarbon values were obtained for pore water dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), CH 4 , and peat from the Glacial Lake Agassiz peatland. The major implication of this work is that the rate of microbial respiration within a peat column is greater than the peat decomposition rate. The radiocarbon content of DOC at both bog and fen was enriched relative to solid‐phase peat by ∼150‐300‰ consistent with the advection of recently photosynthesized DOC downward into the peat column. Fen Δ 14 C values for DIC and CH 4 closely track the Δ 14 C of pore water DOC at depth, indicating that this recent plant production was the predominant substrate for microbial respiration. Aceticlastic methanogenesis apparently dominated the upper third of the peat column (α = 1.05), shifting toward CO 2 reduction with depth (1.05 < α < 1.08). Upwelling groundwater contributed as much as 15% of the DIC to the bulk DIC pool at depth in the fen. The similarity of Δ 14 C values for DIC and CH 4 suggests that methanogens utilized DIC from this source as well as DIC produced in situ. Bog Δ 14 C values for pore water DIC and CH 4 differ by ≤ 15‰ at all depths and are depleted in 14 C relative to DOC by ∼100‰, suggesting microbial utilization of a mixture of older and modern substrates. CO 2 reduction was the primary pathway for methanogenesis at all depths in the bog (α = 1.08), and groundwater influence on bulk DIC was negligible. For both sites, Δ 14 C−DIC and Δ 14 C−CH 4 are approximately equal at depths where stable isotope data indicate a predominance of CO 2 reduction and dissimilar when acetate fermentation is indicated.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here