Identification of Related Peptides through the Analysis of Fragment Ion Mass Shifts
Author(s) -
Thomas Wilhelm,
Alexandra M. E. Jones
Publication year - 2014
Publication title -
journal of proteome research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.644
H-Index - 161
eISSN - 1535-3907
pISSN - 1535-3893
DOI - 10.1021/pr500347e
Subject(s) - fragmentation (computing) , mass spectrometry , database search engine , mass spectrum , chemistry , peptide , mass , peptide mass fingerprinting , tandem mass spectrometry , ion , computational biology , chromatography , proteomics , computer science , search engine , biology , biochemistry , organic chemistry , gene , information retrieval , operating system
Mass spectrometry (MS) has become the method of choice to identify and quantify proteins, typically by fragmenting peptides and inferring protein identification by reference to sequence databases. Well-established programs have largely solved the problem of identifying peptides in complex mixtures. However, to prevent the search space from becoming prohibitively large, most search engines need a list of expected modifications. Therefore, unexpected modifications limit both the identification of proteins and peptide-based quantification. We developed mass spectrometry-peak shift analysis (MS-PSA) to rapidly identify related spectra in large data sets without reference to databases or specified modifications. Peptide identifications from established tools, such as MASCOT or SEQUEST, may be propagated onto MS-PSA results. Modification of a peptide alters the mass of the precursor ion and some of the fragmentation ions. MS-PSA identifies characteristic fragmentation masses from MS/MS spectra. Related spectra are identified by pattern matching of unchanged and mass-shifted fragment ions. We illustrate the use of MS-PSA with simple and complex mixtures with both high and low mass accuracy data sets. MS-PSA is not limited to the analysis of peptides but can be used for the identification of related groups of spectra in any set of fragmentation patterns.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom