z-logo
open-access-imgOpen Access
Silyl Imine Electrophiles in Enantioselective Catalysis: A Rosetta Stone for Peptide Homologation, Enabling Diverse N-Protected Aryl Glycines from Aldehydes in Three Steps
Author(s) -
Dawn M. Makley,
Jeffrey N. Johnston
Publication year - 2014
Publication title -
organic letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.94
H-Index - 239
eISSN - 1523-7060
pISSN - 1523-7052
DOI - 10.1021/ol501297a
Subject(s) - chemistry , electrophile , imine , aryl , umpolung , silylation , enantioselective synthesis , epimer , amidine , trimethylsilyl , catalysis , organic chemistry , amino acid , combinatorial chemistry , stereochemistry , nucleophile , alkyl , biochemistry
We report that N-(trimethylsilyl)imines serve in the Bis(AMidine)-catalyzed addition of bromonitromethane with a high degree of enantioselection. This allows for the production of a range of protected α-bromo nitroalkane donors (including Fmoc) for use in Umpolung Amide Synthesis (UmAS). Hence, peptide homologation with nonnatural aryl glycine amino acids is achieved in three steps from aromatic aldehydes, which are plentiful and inexpensive. Epimerization during the homologation step is circumvented by avoiding an α-amino acid intermediate.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom