Chlorinated Polyketide Obtained from aDaldiniasp. Treated with the Epigenetic Modifier Suberoylanilide Hydroxamic Acid
Author(s) -
Lin Du,
Jarrod B. King,
Robert H. Cichewicz
Publication year - 2014
Publication title -
journal of natural products
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.976
H-Index - 139
eISSN - 1520-6025
pISSN - 0163-3864
DOI - 10.1021/np500522z
Subject(s) - chemistry , polyketide , metabolite , stereochemistry , ascorbic acid , epoxide , hydroxamic acid , dpph , antioxidant , organic chemistry , biochemistry , enzyme , biosynthesis , food science , catalysis
A new chlorinated pentacyclic polyketide, daldinone E (1), was purified from a Daldinia sp. fungal isolate treated with the epigenetic modifier suberoylanilide hydroxamic acid (SAHA). A biosynthetically related epoxide-containing daldinone analogue, 2, was also purified from the same fungus. The structures of both compounds were established by spectroscopic methods, and the absolute configurations were assigned by analysis of their NMR data (coupling constants and ROESY correlations) and DFT calculations of specific rotations and ECD spectra. During the course of these studies it was determined that metabolite 2 and the previously reported daldinone B shared the same spectroscopic data, leading to a revision of the reported structure. Both compounds 1 and 2 also exhibited DPPH radical scavenging activities with potency comparable to the positive control ascorbic acid.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom