Subwavelength Lattice Optics by Evolutionary Design
Author(s) -
Mark D. Huntington,
Lincoln J. Lauhon,
Teri W. Odom
Publication year - 2014
Publication title -
nano letters
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 4.853
H-Index - 488
eISSN - 1530-6992
pISSN - 1530-6984
DOI - 10.1021/nl5040573
Subject(s) - lattice (music) , discretization , reciprocal lattice , lattice plane , optics , lattice constant , materials science , crystal structure , optoelectronics , physics , diffraction , mathematics , chemistry , crystallography , mathematical analysis , acoustics
This paper describes a new class of structured optical materials--lattice opto-materials--that can manipulate the flow of visible light into a wide range of three-dimensional profiles using evolutionary design principles. Lattice opto-materials are based on the discretization of a surface into a two-dimensional (2D) subwavelength lattice whose individual lattice sites can be controlled to achieve a programmed optical response. To access a desired optical property, we designed a lattice evolutionary algorithm that includes and optimizes contributions from every element in the lattice. Lattice opto-materials can exhibit simple properties, such as on- and off-axis focusing, and can also concentrate light into multiple, discrete spots. We expanded the unit cell shapes of the lattice to achieve distinct, polarization-dependent optical responses from the same 2D patterned substrate. Finally, these lattice opto-materials can also be combined into architectures that resemble a new type of compound flat lens.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom