z-logo
open-access-imgOpen Access
Design Principles for Photovoltaic Devices Based on Si Nanowires with Axial or Radial p–n Junctions
Author(s) -
Joseph D. Christesen,
Xing Zhang,
Christopher W. Pinion,
Thomas A. Celano,
Cory J. Flynn,
James F. Cahoon
Publication year - 2012
Publication title -
nano letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.853
H-Index - 488
eISSN - 1530-6992
pISSN - 1530-6984
DOI - 10.1021/nl303610m
Subject(s) - nanowire , materials science , optoelectronics , photovoltaic system , doping , semiconductor , depletion region , voltage , p–n junction , open circuit voltage , physics , electrical engineering , quantum mechanics , engineering
Semiconductor nanowires (NWs) are a developing platform for electronic and photonic technologies, and many demonstrated devices utilize a p-type/n-type (p-n) junction encoded along either the axial or radial directions of the wires. These miniaturized junctions enable a diverse range of functions, from sensors to solar cells, yet the physics of the devices has not been thoroughly evaluated. Here, we present finite-element modeling of axial and radial Si NW p-n junctions with total diameters of ~240 nm and donor/acceptor doping levels ranging from 10(16) to 10(20) cm(-3). We evaluate the photovoltaic performance of horizontally oriented NWs under 1 sun illumination and compare simulated current-voltage data to experimental measurements, permitting detailed analysis of NW performance, limitations, and prospect as a technology for solar energy conversion. Although high surface-to-volume ratios are cited as detrimental to NW performance, radial p-n junctions are surprisingly insensitive to surface recombination, with devices supporting open-circuit voltages (V(OC)) of ~0.54 V and internal quantum efficiencies of 95% even with high surface recombination velocities (SRVs) of 10(5) cm/s. Axial devices, in which the depletion region is exposed to the surface, are far more sensitive to SRV, requiring substantially lower values of 10(3)-10(4) cm/s to produce the same level of performance. For low values of the SRV (<100 cm/s), both axial and radial NWs can support V(OC) values of >0.70 V if the bulk minority carrier lifetime is 1 μs or greater. Experimental measurements on NWs grown by a vapor-liquid-solid mechanism yield V(OC) of 0.23 and 0.44 V for axial and radial NWs, respectively, and show that axial devices are limited by a SRV of ~7 × 10(3) cm/s while radial devices are limited by a bulk lifetime of ~3 ns. The simulations show that with further development the electrical characteristics of 200-300 nm Si NWs are sufficient to support power-conversion efficiencies of 15-25%. The analysis presented here can be generalized to other semiconductor homo- and heterojunctions, and we expect that insights from finite element modeling will serve as a powerful method to guide the design of advanced nanoscale structures.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here