Crystallization and Phase Changes in Paracetamol from the Amorphous Solid to the Liquid Phase
Author(s) -
Juraj Šibík,
Michael Sargent,
Miriam Franklin,
J. Axel Zeitler
Publication year - 2014
Publication title -
molecular pharmaceutics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.13
H-Index - 127
eISSN - 1543-8392
pISSN - 1543-8384
DOI - 10.1021/mp400768m
Subject(s) - supercooling , crystallization , amorphous solid , phase (matter) , materials science , liquid phase , analytical chemistry (journal) , thermodynamics , kinetics , crystallography , chemistry , chromatography , organic chemistry , physics , quantum mechanics
For the case of paracetamol, we show how terahertz time-domain spectroscopy can be used to characterize the solid and liquid phase dynamics. Heating of supercooled amorphous paracetamol from 295 K in a covered sample under vacuum leads to its crystallization at 330 K. First, form III is formed followed by the transformation of form III to form II at 375 K, to form I at 405 K, and finally melting is observed around 455 K. We discuss the difference between the featureless spectra of the supercooled liquid and its liquid melt. Lastly, we studied the onset of crystallization from the supercooled liquid in detail and quantified its kinetics based on the Avrami-Erofeev model. We determined an effective rate constant of k = 0.056 min(-1) with a corresponding onset of crystallization at T = 329.5 K for a heating rate of 0.4 K min(-1).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom