z-logo
open-access-imgOpen Access
Lipopolysaccharide-QD Micelles Induce Marked Induction of TLR2 and Lipid Droplet Accumulation in Olfactory Bulb Microglia
Author(s) -
Mélanie Lalancette–Hébert,
Alexandre Moquin,
Angela O. Choi,
Jasna Križ,
Dušica Maysinger
Publication year - 2010
Publication title -
molecular pharmaceutics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.13
H-Index - 127
eISSN - 1543-8392
pISSN - 1543-8384
DOI - 10.1021/mp1000372
Subject(s) - microglia , tlr2 , chemistry , microbiology and biotechnology , lipopolysaccharide , toll like receptor , innate immune system , nitric oxide , biophysics , inflammation , receptor , biology , biochemistry , immunology , organic chemistry
The intranasal entry of biological and artificial nanoparticles can induce inflammatory responses both locally and more widely in surrounding tissues. The aim of this study was to assess the microglia activation induced by nanoparticles with different surfaces in (i) a transgenic mouse (Toll-like receptor (TLR)-2-luciferase (Luc) reporter) which allowed the biophotonic imaging of microglial activation/innate immune response after intranasal delivery of nanoparticles and (ii) in microglial dispersed cells in vitro. Cadmium selenide nanoparticles (quantum dots, QD), surface-exchanged with lipopolysaccharide (LPS) to form micelles, were tested to assess microglia activation and lipid droplet formation in both model systems. In vivo imaging revealed a robust increase in the extent of microglial activation/TLR2 response, initially in the olfactory bulb, but also in other more caudal brain regions. The increased TLR2 expression was complemented with enhanced CD68 expression in activated microglia in the same regions. Intense in vitro microglial activation by LPS-QD micelles was accompanied by a significant enhancement of nitric oxide production and formation of large lipid droplets, suggesting the possibility of this organelle acting as an inflammatory biomarker in response to nanoparticles, and not simply as a storage site in fat tissues.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom