z-logo
open-access-imgOpen Access
Superhydrophobic Properties of Nonaligned Boron Nitride Nanotube Films
Author(s) -
Lu Hua Li,
Ying Chen
Publication year - 2009
Publication title -
langmuir
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.042
H-Index - 333
eISSN - 1520-5827
pISSN - 0743-7463
DOI - 10.1021/la903604w
Subject(s) - contact angle , boron nitride , materials science , hysteresis , drop (telecommunication) , nanotechnology , sessile drop technique , nanotube , composite material , carbon nanotube , telecommunications , physics , computer science , quantum mechanics
Superhydrophobicity is highly desirable for numerous applications. Here, we report that a semierect but nonaligned boron nitride nanotube (BNNT) film showed superhydrophobicity with contact angle above 170 degrees and a small contact angle hysteresis. This superhydrophobicity was stable over a large range of drop sizes, and the measured critical transition pressure was about 10 kPa. However, the prostrate BNNT films only showed hydrophobicity. The drop retraction behavior during evaporation, the pressure effect on contact angle, the critical transition pressure, the drop impact behavior, and the self-cleaning efficiency between these two kinds of films were systematically investigated and compared.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom