Isolation of Carboxylic Acid-Protected Au25 Clusters Using a Borohydride Purification Strategy
Author(s) -
Atal Shivhare,
Lisa Wang,
Robert W. J. Scott
Publication year - 2015
Publication title -
langmuir
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.042
H-Index - 333
eISSN - 1520-5827
pISSN - 0743-7463
DOI - 10.1021/la504292y
Subject(s) - chemistry , deprotonation , protonation , cluster (spacecraft) , precipitation , matrix isolation , desorption , acetic acid , borohydride , transmission electron microscopy , mass spectrometry , humic acid , carboxylic acid , crystallography , ion , chromatography , molecule , adsorption , organic chemistry , nanotechnology , materials science , catalysis , fertilizer , physics , meteorology , computer science , programming language
We report the synthesis of 11-mercaptoundecanoic acid (11-MUA) and 16-mercaptohexadecanoic acid (16-MHA) protected Au25 clusters with moderate yields (∼15%) using a NaBH4 purification strategy. UV-vis spectroscopy, transmission electron microscopy (TEM), and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry were employed to study the entire process of the isolation of 11-MUA-protected Au25 clusters from a polydisperse Au cluster solution. UV-vis and TEM data clearly show the formation of a polydisperse mixture, which upon the addition of NaBH4 leads to the growth and precipitation of non-Au25 clusters, leaving the Au25 clusters behind. MALDI MS shows the molecular ion peak for the 11-MUA-protected Au25 cluster. 11-MUA-protected Au25 clusters in THF were purified by slowly increasing the pH of the solution, which leads to the complete deprotonation of carboxyl groups on the surface and eventually precipitation of Au25 clusters. Further protonation of these clusters by acetic acid leads to their solubilization in THF. These results show that, owing to the inherent stability of Au25 clusters, a NaBH4 purification strategy can be used to isolate Au25 clusters with surface carboxylic acid functionalities from a polydisperse Au cluster solution.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom