z-logo
open-access-imgOpen Access
Tuning the Shape of Mesoporous Silica Particles by Alterations in Parameter Space: From Rods to Platelets
Author(s) -
Emma M. Björk,
Fredrik Söderlind,
Magnus Odén
Publication year - 2013
Publication title -
langmuir
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.042
H-Index - 333
eISSN - 1520-5827
pISSN - 0743-7463
DOI - 10.1021/la403201v
Subject(s) - particle (ecology) , particle size , micelle , chemical engineering , mesoporous silica , heptane , materials science , rod , mesoporous material , morphology (biology) , molecular sieve , ion , nanotechnology , chemistry , organic chemistry , aqueous solution , catalysis , medicine , oceanography , alternative medicine , pathology , biology , engineering , genetics , geology
The knowledge of how to control the pore size and morphology of separated mesoporous silica particles is crucial for optimizing their performance in applications, such as molecular sieves and drug delivery systems. In this work, we have systematically studied the effects of various synthesis parameters to gain a deeper understanding of how particle morphologies can be altered. It was found that the morphology for isolated particles of SBA-15 type, with unusually short and wide pores, could be altered from rods to platelets by variations in the NH4F concentration. The pore length is nearly constant (~300 nm) for the different morphologies, but the particle width is increasing from 200 nm to >3 μm when decreasing the amount of NH4F, and the pore size can be tuned between 10 and 13 nm. Furthermore, other synthesis parameters such as heptane concentration, pH, silica precursor, and additions of ions have also been studied. The trend regarding particle width is independent of heptane concentration, at the same time as heptane increases the particle length up to a plateau value of ~500 nm. In all, parameters controlling particle width, length, and pore size have been separated in order to evaluate their function in the particle formation. Additionally, it was found that the formation time of the particles is strongly affected by the fluoride ion concentration, and a mechanism for particle formation for this system, where micelles transform from a foam, to multilamellar vesicles, and finally to cylindrical micelles, is suggested.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom