z-logo
open-access-imgOpen Access
Characterization of Mesoporous Thin Films by Specular Reflectance Porosimetry
Author(s) -
Nuria Hidalgo,
Carmen LópezLópez,
Gabriel Lozano,
Mauricio E. Calvo,
Hernán Míguez
Publication year - 2012
Publication title -
langmuir
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.042
H-Index - 333
eISSN - 1520-5827
pISSN - 0743-7463
DOI - 10.1021/la3025793
Subject(s) - porosimetry , specular reflection , mesoporous material , characterization (materials science) , materials science , reflectivity , chemical engineering , mineralogy , nanotechnology , optics , porosity , chemistry , porous medium , composite material , organic chemistry , physics , engineering , catalysis
The pore size distribution of mesoporous thin films is herein investigated through a reliable and versatile technique coined specular reflectance porosimetry. This method is based on the analysis of the gradual shift of the optical response of a porous slab measured in quasi-normal reflection mode that occurs as the vapor pressure of a volatile liquid varies in a closed chamber. The fitting of the spectra collected at each vapor pressure is employed to calculate the volume of solvent contained in the interstitial sites and thus to obtain adsorption-desorption isotherms from which the pore size distribution and internal and external specific surface areas are extracted. This technique requires only a microscope operating in the visible range attached to a spectrophotometre. Its suitability to analyze films deposited onto arbitrary substrates, one of the main limitations of currently employed ellipsometric porosimetry and quartz balance techniques, is demonstrated. Two standard mesoporous materials, supramolecularly templated mesostructured films and packed nanoparticle layers, are employed to prove the concept proposed herein.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom