Locations and Reorientations of Multi-Ring-Fused 2-Pyridones in Ganglioside GM1 Micelles
Author(s) -
Radek Šachl,
Erik Rosenbaum,
Magnus Sellstedt,
Fredrik Almqvist,
Lennart B.Å. Johansson
Publication year - 2011
Publication title -
langmuir
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.042
H-Index - 333
eISSN - 1520-5827
pISSN - 0743-7463
DOI - 10.1021/la104051z
Subject(s) - ring (chemistry) , chemistry , micelle , excited state , fluorescence , acceptor , bodipy , photochemistry , chemical physics , crystallography , aqueous solution , atomic physics , organic chemistry , physics , quantum mechanics , condensed matter physics
Fluorescent multi-ring-fused 2-pyridones, with chemical resemblance to other biologically active 2-pyridone systems, were solubilized in spherical micelles formed by the ganglioside G(M1) and studied with respect to their spatial localization and rotational mobility. For this, electronic energy transfer between the multi-ring-fused 2-pyridone (donor) and BODIPY-FL-labeled G(M1) was determined, as well as their fluorescence depolarization. From the obtained efficiency of energy transfer to the acceptor group (BODIPY-FL), either localized in the polar or in the nonpolar part of the ganglioside, it has been possible to estimate the most likely localization of the multi-ring-fused 2-pyridones. The center of mass of the studied multi-ring-fused 2-pyridones are located at approximately 33 Å from the micellar center of mass, which corresponds to the internal hydrophobic-hydrophilic interfacial region. At this location, the reorienting rates of the multi-ring-fused 2-pyridones are surprisingly slow with typical correlation times of 35-55 ns. No evidence was found for the formation of ground and excited state dimers, even when two monomers were forced to be near each other via a short covalent linker.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom