z-logo
open-access-imgOpen Access
Electrochemically Driven Assembly of Mixed Dithiol Bilayers via Sulfur Dimers
Author(s) -
S. Rifai,
Gregory P. Lopinski,
T. R. Ward,
D. D. M. Wayner,
M. Morin
Publication year - 2003
Publication title -
langmuir
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.042
H-Index - 333
eISSN - 1520-5827
pISSN - 0743-7463
DOI - 10.1021/la034959m
Subject(s) - dithiol , bilayer , monolayer , chemistry , infrared spectroscopy , methylene , crystallography , membrane , organic chemistry , biochemistry
We report on the electroformation of mixed bilayers of rigid (1,4-benzenedimethanethiol) and flexible (1,6-hexanedithiol) dithiols on Au(111) from alkaline aqueous solution. These bilayers are formed by first electrodepositing a monolayer of vertically aligned dithiols. The unreacted dithiols are then oxidatively dimerized with the other dithiols, and a bilayer is formed. ACIS (ac impedance spectroscopy) measurements indicate that the monolayer of the rigid dithiol is a better substrate for dimerization than the flexible dithiol. ACIS also reveals that the electroformation of a bilayer is more complete, and the bilayer has fewer defects than one obtained through chemical incubation. Infrared reflection-absorption spectroscopy provides proof for mixed-bilayer formation of the alkanedithiol with the benzenedimethanethiol having its methylene groups deuterated. The mechanism for bilayer formation via the oxidative dimerization of thiols is supported by high-resolution electron energy loss spectra of bilayers, which show a S-S stretch at 515 cm-1. Our results show that this electrochemical approach is a viable methodology for the formation of complex organic interfaces.Peer reviewed: YesNRC publication: Ye

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom