Effect of Carrier Thermalization Dynamics on Light Emission and Amplification in Organometal Halide Perovskites
Author(s) -
Kai Chen,
Alex J. Barker,
Francis L. C. Morgan,
Jonathan E. Halpert,
Justin M. Hodgkiss
Publication year - 2014
Publication title -
the journal of physical chemistry letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.563
H-Index - 203
ISSN - 1948-7185
DOI - 10.1021/jz502528c
Subject(s) - thermalisation , photoluminescence , charge carrier , ultrashort pulse , exciton , materials science , band gap , fluence , optoelectronics , ultrafast laser spectroscopy , absorption (acoustics) , laser , physics , optics , atomic physics , condensed matter physics
The remarkable rise of organometal halide perovskites as solar photovoltaic materials has been followed by promising developments in light-emitting devices, including lasers. Here we present unique insights into the processes leading to photon emission in these materials. We employ ultrafast broadband photoluminescence (PL) and transient absorption spectroscopies to directly link density dependent ultrafast charge dynamics to PL. We find that exceptionally strong PL at the band edge is preceded by thermalization of free charge carriers. Short-lived PL above the band gap is clear evidence of nonexcitonic emission from hot carriers, and ultrafast PL depolarization confirms that uncorrelated charge pairs are precursors to photon emission. Carrier thermalization has a profound effect on amplified stimulated emission at high fluence; the delayed onset of optical gain we resolve within the first 10 ps and the unusual oscillatory behavior are both consequences of the kinetic interplay between carrier thermalization and optical gain.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom