z-logo
open-access-imgOpen Access
Single-Molecule Fluorescence Using Nucleotide Analogs: A Proof-of-Principle
Author(s) -
Elvin A. Alemán,
Chamaree de Silva,
Eric M. Patrick,
Karin MusierForsyth,
David Rueda
Publication year - 2014
Publication title -
the journal of physical chemistry letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.563
H-Index - 203
ISSN - 1948-7185
DOI - 10.1021/jz4025832
Subject(s) - nucleic acid , fluorescence , nucleotide , dna , rna , biophysics , chemistry , molecule , nucleic acid structure , single molecule experiment , combinatorial chemistry , biochemistry , biology , gene , organic chemistry , physics , quantum mechanics
Fluorescent nucleotide analogues, such as 2-aminopurine (2AP) and pyrrolo-C (PyC), have been extensively used to study nucleic acid local conformational dynamics in bulk experiments. Here we present a proof-of-principle approach using 2AP and PyC fluorescence at the single-molecule level. Our data show that ssDNA, dsDNA, or RNA containing both 2AP and PyC can be monitored using single-molecule fluorescence and a click chemistry immobilization method. We demonstrate that this approach can be used to monitor DNA and RNA in real time. This is the first reported assay using fluorescent nucleotide analogs at the single-molecule level. We anticipate that single 2AP or PyC fluorescence will have numerous applications in studies of DNA and RNA, including protein-induced base-flipping dynamics in protein-nucleic acid complexes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom