Parahydrogen-Induced Polarization with a Rh-Based Monodentate Ligand in Water
Author(s) -
Roman V. Shchepin,
Aaron M. Coffey,
Kevin W. Waddell,
Eduard Y. Chekmenev
Publication year - 2012
Publication title -
the journal of physical chemistry letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.563
H-Index - 203
ISSN - 1948-7185
DOI - 10.1021/jz301389r
Subject(s) - denticity , phosphine , chemistry , hydroxymethyl , ligand (biochemistry) , catalysis , spin isomers of hydrogen , medicinal chemistry , photochemistry , hydrogen , stereochemistry , organic chemistry , metal , receptor , biochemistry
Reported here is a water soluble Rh(I)-based catalyst for performing parahydrogen induced polarization (PHIP). The [Rh(I)(norbornadiene)(THP)(2)](+)[BF(4)](-) catalyst utilizes the monodentate phosphine ligand tris(hydroxymethyl)phosphine (THP). The monodentate PHIP catalyst is less susceptible to oxygenation by air and THP ligand and is significantly less expensive than bidentate water-soluble PHIP ligands. In situ PHIP detection with this monodentate Rh(I) based catalyst in water yielded 12% (13)C polarization for the parahydrogen addition product, 2-hydroxyethyl 1-(13)C-propionate-d(2,3,3) (HEP), with a (13)C T(1) relaxation of 108 seconds at 0.0475 T. PHIP polarization yields were high, reflecting efficient hydrogenation even under conditions of high content of the oxidized phosphine form of the THP ligand.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom